An analytical approach to the inference of summary data of additive type
نویسندگان
چکیده
Summary data take the form of a triple that consists of a summary attribute, a category and a numeric value. The inference problem of summary data consists in deciding whether or not a summary data of interest is evaluable (i.e., can be computed) from a given set of summary data. We address the special case of the inference problem with homogeneous summary data (i.e., summary data with the same summary attribute), where the summary attribute is of additive nature. Owing to additivity, one can model the information content of the given summary data by a linear equation system whose variables are constrained to take their values from the domain of the summary attribute. We state two evaluability criteria, one for a real or integral summary attribute, and the other for a nonnegative-real or nonnegative-integral summary attribute. Using the two evaluability criteria, we show that our inference problem can be solved in strongly polynomial time for a real or integral or nonnegative real summary attribute, and is coNP-complete for a nonnegative-integral summary attribute. Moreover, we prove that, given a summary data of interest that is not evaluable, even in the (simplest) case that the summary attribute is of a real type, finding an evaluable summary data whose category is maximally contained in (or minimally contains) the category of the summary data of interest is an NP-hard problem. c © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملA survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 385 شماره
صفحات -
تاریخ انتشار 2007